CONSTANT FRUSTRATION AND BURSTS OF JOY > 69

From the book "Coders: The
Making of a New Tribe and the
Remaking of the World" by Clive

Thompson, 2019.
ISBN: 978-0735220560
For Educational Purposes Only

There’s a flip side to dealing with the agonizing precision of code
and the grind of constant, bug-ridden failure. When a bug is finally
quashed, the sense of accomplishment is electric. You are now Sherlock
Holmes in his moment of cerebral triumph, patiently tracing back the
evidence and uncovering the murderer, illuminating the crime scene
using nothing but the arc light of your incandescent mind.

My friend Max Whitney has been a programmer for over two de-
cades, but she still remembers the first time she fixed a truly fiendish
bug. She was working as a programmer for New York University, and
students were reporting some trouble logging in to the university’s
main web portal. Specifically, they would sometimes discover that
they were logged into someone else’s account. Whatever was going on?

At first, they noticed that a large number of complaints came from

students who were logging into NYU’s portal while using computers

70 < CODERS

at the Kinko’s copy center around the corner. Maybe Kinko’s was
somehow to blame? But then Whitney saw reports of the same login
bug from computers located on-campus. It became clear that the cul-
prit was the university’s login system itself. Unfortunately, that login
code had been written years earlier by a staff programmer who no
longer worked for NYU. Since Whitney couldn’t ask him to help
debug his code, she sat down to scrutinize it line by line with the help
of another expert programmer.

Reading someone else’s code can be a baffling task. That’s because
there’s rarely a simple, obvious way to write a piece of code. Idiosyn-
crasies abound. Different coders have very different styles. If you asked
four different programmers to write a pretty basic algorithm—say, one
that figures out and prints the first 10,0000 prime numbers, for
example—you’ll likely get four different approaches that were struc-
tured and looked a bit different. Even something as simple as picking
the names for one’s variables can be a source of bitter argument be-
tween coders. Some prefer to use extremely short, one-letter variables
(x = “Hello, World!”), arguing it keeps their code more compact
and thus easier to glance at. Others prefer to use more descriptive vari-
able names (greetingToUser = “Hello, World!”), pointing out that
it’'ll be easier, a year later when the code is crashing, to look at a vari-
able like greetingTouser and know what it means. When code gets
particularly lengthy, or if something is particularly dense, coders are
usually encouraged to leave little comments in their code that explain
exactly what the heck is going on, so that some poor soul years hence
will have guidance in sifting through the thicket. But often when cod-
ers are working fast, or under pressure, they don’t “document” their
code very much; and even with comments, frankly, figuring out the
flow and logic of a piece of code can still be a brow-furrowing affair.
(In well-functioning firms, no code is put into production until it’s

undergone “code review,” with colleagues looking it over—not just to



CONSTANT FRUSTRATION AND BURSTS OF JOY > 71

make sure it works, but that it’s sufficiently readable by others)) One
estimate suggests that coders spend 10 times the amount of time pars-
ing lines of software than they do writing them. This is another reason
coders can be so snippish and judgy about the style of their colleague’s
code. They know they may eventually need to read it.

This is the situation in which Whitney found herself. She and her
colleague pored over the login code for hours, slowly figuring out how
it worked, like an electrician patiently following the tangled wires that
someone else had laid down in an apartment. Hmmm, this section trig-
gers that chunk of code, which would get that other function to start
up- .. .

Then suddenly, they saw it. When they finally had enough of the
code’s structure loaded into their minds, they could see the bug.

The problem began the moment someone connected to NYU’s
network. When students logged in, the system gave them a random
temporary [D number for that session. To generate the random ID
number, the program would “seed” its random-number generator us-
ing the timestamp, the exact instant that the student logged in. But
what if two students just coincidentally logged in at precisely the same
second? They’d be issued the same quasi-random number; oops! To
prevent this, the programmer added another “seed” number, the IP
address of the computer that the student was using. NYU had tons of
IP addresses, so the programmer figured there was no chance any
two students logging in would have precisely the same timestamp and
precisely the same IP address. Right?

Nope. Years later, NYU and Kinko’s switched over to a new tech-
nology that funneled lots of computers through just one or two IP
addresses. They did this to handle the explosive growth of internet use
on campus, but nobody realized it might interfere with the old login
system, written so many years previously. But it did. Suddenly it be-
came possible for two people to log in at the same time and have the

72 < CODERS

same [P address. The two users would be assigned the exact same ses-
sion ID, and presto: One of them would be logged into the other per-
son’s account, able to see the other person’s email and notes.

In a flurry, Whitney wrote some code to test to see if their diagno-
sis was correct. It was. They’d figured it out. I’d take more weeks of
slogging to actually fix the bug, but at least the mystery was solved.

And she was suffused with a drug-like euphoria, a feeling of mastery
and accomplishment that rendered her aglow. “It was wonderful,” she
recalls. “I walked the halls of Warren Weaver Hall, up and down
the little H-shaped hall, just going, I am a golden god! I am a golden
god!”

She wanted to savor the moment, because she knew it wouldn’t last.

“I knew that the moment I sat down again, I was gonna find the
next thing that was broken,” she says, and sighs. Sure, lots of the code
at NYU worked fine. Most of it did, probably some of which she had
written herself. But you didn’t spend much time pondering the stuff
that worked. Indeed, by definition, if it’s working, you're usually ignor-
ing it. “The actual thing that a programmer spends their time on is all
the shit that’s broken. The entire activity of programming is an exer-
cise in continual failure.

“The programmer personality is someone who has the ability to
derive a tremendous sense of joy from an incredibly small moment of

success.”

Part of what’s so thrilling about a programming “win” is how
abruptly it can emerge. “Code can quickly change states; it goes from
not working at all to working, in a flash,” as Cal Henderson, the CTO
and cofounder of Slack, once told me.

This provides a narcotic jolt of pleasure, one so intense that coders

will endure almost any grinding frustration just to taste it again,



